Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.101
Filtrar
1.
Cell Host Microbe ; 32(4): 441-442, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604120

RESUMO

The size of the nuclear pore should, in principle, prevent HIV-1 entry. However, HIV-1 capsid is able to gain nuclear pore entry. In a recent issue of Nature, Fu et al. and Dickson et al. demonstrate that the HIV-1 capsid mimics the nuclear transport protein karyopherins to access host nuclei.


Assuntos
Infecções por HIV , Poro Nuclear , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Infecções por HIV/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
2.
J Biomed Sci ; 31(1): 34, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561844

RESUMO

BACKGROUND: It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. METHODS: HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. RESULTS: Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of "bipolar distribution" of phosphorylated HBc and a de-P HBc doublet. CONCLUSIONS: It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.


Assuntos
Capsídeo , Vírus da Hepatite B , Vírus da Hepatite B/genética , Capsídeo/metabolismo , Montagem de Vírus/genética , DNA Viral , RNA Viral/metabolismo , Proteínas do Capsídeo/metabolismo , Replicação Viral/genética , Ribonuclease H/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
3.
J Med Virol ; 96(4): e29594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576317

RESUMO

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Assuntos
Fármacos Anti-HIV , Soropositividade para HIV , Humanos , Capsídeo/metabolismo , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Simulação de Acoplamento Molecular , Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/metabolismo , Antirretrovirais
4.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574119

RESUMO

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Assuntos
Rotavirus , Rotavirus/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Cálcio/metabolismo , Lipossomos/análise , Lipossomos/metabolismo
5.
Sci Adv ; 10(17): eadn7033, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657061

RESUMO

HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.


Assuntos
DNA Viral , HIV-1 , Transcrição Reversa , Desenvelopamento do Vírus , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , DNA Viral/genética , DNA Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Genoma Viral , Microscopia de Força Atômica , Capsídeo/metabolismo
6.
ACS Infect Dis ; 10(4): 1162-1173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38564659

RESUMO

Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.


Assuntos
Capsídeo , Vírus da Hepatite B , Capsídeo/metabolismo , Proteínas do Capsídeo , Montagem de Vírus , Nucleocapsídeo
7.
Viruses ; 16(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543807

RESUMO

Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.


Assuntos
Capsídeo , Dependovirus , Capsídeo/metabolismo , Dependovirus/metabolismo , Sorogrupo , Distribuição Tecidual , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
8.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
9.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512975

RESUMO

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Assuntos
Capsídeo , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Capsídeo/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Antivirais/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo
10.
Cell Rep ; 43(3): 113902, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431840

RESUMO

Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.


Assuntos
Capsídeo , Dependovirus , Humanos , Animais , Camundongos , Capsídeo/metabolismo , Dependovirus/metabolismo , Histonas/metabolismo , Transcrição Viral , Vetores Genéticos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Primatas , Especificidade de Hospedeiro , Cromatina/metabolismo
11.
J Virol ; 98(4): e0030824, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38497663

RESUMO

Host antiviral proteins inhibit primate lentiviruses and other retroviruses by targeting many features of the viral life cycle. The lentiviral capsid protein and the assembled viral core are known to be inhibited through multiple, directly acting antiviral proteins. Several phenotypes, including those known as Lv1 through Lv5, have been described as cell type-specific blocks to infection against some but not all primate lentiviruses. Here we review important features of known capsid-targeting blocks to infection together with several blocks to infection for which the genes responsible for the inhibition still remain to be identified. We outline the features of these blocks as well as how current methodologies are now well suited to find these antiviral genes and solve these long-standing mysteries in the HIV and retrovirology fields.


Assuntos
HIV-1 , Lentivirus , Animais , Lentivirus/genética , Lentivirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/fisiologia , Antivirais/metabolismo
12.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518746

RESUMO

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Assuntos
Proteínas do Capsídeo , HIV-1 , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Montagem de Vírus , Replicação Viral , Antivirais/farmacologia
13.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473709

RESUMO

Porcine circovirus 4 (PCV4) is a newly identified virus belonging to PCV of the Circoviridae family, the Circovirus genus. We previously found that PCV4 is pathogenic in vitro, while the virus's replication in cells is still unknown. In this study, we evaluated the N-terminal of the PCV4 capsid (Cap) and identified an NLS at amino acid residues 4-37 of the N-terminus of the PCV4 Cap, 4RSRYSRRRRNRRNQRRRGLWPRASRRRYRWRRKN37. The NLS was further divided into two fragments (NLS-A and NLS-B) based on the predicted structure, including two α-helixes, which were located at 4RSRYSRRRRNRRNQRR19 and 24PRASRRRYRWRRK36, respectively. Further studies showed that the NLS, especially the first α-helixes formed by the NLS-A fragment, determined the nuclear localization of the Cap protein, and the amino acid 4RSRY7 in the NLS of the PCV4 Cap was the critical motif affecting the VLP packaging. These results will provide a theoretical basis for elucidating the infection mechanism of PCV4 and developing subunit vaccines based on VLPs.


Assuntos
Circovirus , Sinais de Localização Nuclear , Animais , Suínos , Sinais de Localização Nuclear/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Aminoácidos/metabolismo
14.
Int J Biol Macromol ; 262(Pt 2): 130136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354926

RESUMO

Alphaviruses pose a significant threat to public health. Capsid protein encoded in the alphaviral genomes constitutes an interesting therapy target, as it also serves as a protease (CP). Remarkably, it undergoes autoproteolysis, leading to the generation of the C-terminal tryptophan that localizes to the active pocket, deactivating the enzyme. Lack of activity hampers the viral replication cycle, as the virus is not capable of producing the infectious progeny. We investigated the structure and function of the CP encoded in the genome of O'nyong'nyong virus (ONNV), which has instigated outbreaks in Africa. Our research provides a high-resolution crystal structure of the ONNV CP in its active state and evaluates the enzyme's activity. Furthermore, we demonstrated a dose-dependent reduction in ONNV CP proteolytic activity when exposed to indole, suggesting that tryptophan analogs may be a promising basis for developing small molecule inhibitors. It's noteworthy that the capsid protease plays an essential role in virus assembly, binding viral glycoproteins through its glycoprotein-binding hydrophobic pocket. We showed that non-aromatic cyclic compounds like dioxane disrupt this vital interaction. Our findings provide deeper insights into ONNV's biology, and we believe they will prove instrumental in guiding the development of antiviral strategies against arthritogenic alphaviruses.


Assuntos
Alphavirus , Proteínas do Capsídeo , Humanos , Proteínas do Capsídeo/química , Capsídeo/química , Capsídeo/metabolismo , Vírus O'nyong-nyong/metabolismo , Peptídeo Hidrolases/metabolismo , Ideação Suicida , Triptofano/metabolismo , Alphavirus/metabolismo , Endopeptidases/metabolismo
15.
J Virol ; 98(3): e0182723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305183

RESUMO

Most icosahedral DNA viruses package and condense their genomes into pre-formed, volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded (ss) DNA micro- and parvoviruses. Before packaging, ~120 copies of the øX174 DNA-binding protein J interact with double-stranded DNA. 60 J proteins enter the procapsid with the ssDNA genome, guiding it between 60 icosahedrally ordered DNA-binding pockets formed by the capsid proteins. Although J proteins are small, 28-37 residues in length, they have two domains. The basic, positively charged N-terminus guides the genome between binding pockets, whereas the C-terminus acts as an anchor to the capsid's inner surface. Three C-terminal aromatic residues, W30, Y31, and F37, interact most extensively with the coat protein. Their corresponding codons were mutated, and the resulting strains were biochemically and genetically characterized. Depending on the mutation, the substitutions produced unstable packaging complexes, unstable virions, infectious progeny, or particles packaged with smaller genomes, the latter being a novel phenomenon. The smaller genomes contained internal deletions. The juncture sequences suggest that the unessential A* (A star) protein mediates deletion formation.IMPORTANCEUnessential but strongly conserved gene products are understudied, especially when mutations do not confer discernable phenotypes or the protein's contribution to fitness is too small to reliably determine in laboratory-based assays. Consequently, their functions and evolutionary impact remain obscure. The data presented herein suggest that microvirus A* proteins, discovered over 40 years ago, may hasten the termination of non-productive packaging events. Thus, performing a salvage function by liberating the reusable components of the failed packaging complexes, such as DNA templates and replication enzymes.


Assuntos
Bacteriófago phi X 174 , Proteínas do Capsídeo , DNA de Cadeia Simples , DNA Viral , Proteínas de Ligação a DNA , Evolução Molecular , Empacotamento do Genoma Viral , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/crescimento & desenvolvimento , Bacteriófago phi X 174/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Sequência Conservada , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Aptidão Genética , Mutação , Fenótipo , Moldes Genéticos , Vírion/química , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
16.
J Virol ; 98(3): e0151523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323812

RESUMO

Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.


Assuntos
Proteínas do Capsídeo , Capsídeo , DNA de Cadeia Simples , DNA Viral , Proteínas de Ligação a DNA , Dependovirus , Bocavirus Humano , Proteínas Virais , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/crescimento & desenvolvimento , Dependovirus/metabolismo , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/metabolismo , DNA Viral/biossíntese , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Bocavirus Humano/genética , Bocavirus Humano/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
17.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315015

RESUMO

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Assuntos
Antivirais , Apoptose , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatócitos , Biossíntese de Proteínas , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Capsídeo/química , Capsídeo/classificação , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Replicação Viral , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno
18.
Cell ; 187(4): 831-845.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301645

RESUMO

The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.


Assuntos
Antígenos de Neoplasias , Neoplasias , Proteínas do Tecido Nervoso , Síndromes Paraneoplásicas do Sistema Nervoso , Animais , Humanos , Camundongos , Autoanticorpos , Capsídeo/metabolismo , Epitopos , Neoplasias/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/patologia , Antígenos de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
19.
PLoS Pathog ; 20(2): e1011953, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315719

RESUMO

Carbonic anhydrase IV (Car4) is a newly identified receptor that allows adeno-associated virus (AAV) 9P31 to cross the blood-brain barrier and achieve efficient infection in the central nervous system (CNS) in mouse models. However, the molecular mechanism by which engineered AAV capsids with 7-mer insertion in the variable region (VR) VIII recognize these novel cellular receptors is unknown. Here we report the cryo-EM structures of AAV9P31 and its complex with Mus musculus Car4 at atomic resolution by utilizing the block-based reconstruction (BBR) method. The structures demonstrated that Car4 binds to the protrusions at 3-fold axes of the capsid. The inserted 7-mer extends into a hydrophobic region near the catalytic center of Car4 to form stable interactions. Mutagenesis studies also identified the key residues in Car4 responsible for the AAV9P31 interaction. These findings provide new insights into the novel receptor recognition mechanism of AAV generated by directed evolution and highlight the application of the BBR method to studying the virus-receptor molecular mechanism.


Assuntos
Anidrase Carbônica IV , Dependovirus , Animais , Camundongos , Dependovirus/genética , Anidrase Carbônica IV/análise , Anidrase Carbônica IV/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Barreira Hematoencefálica/metabolismo , Vetores Genéticos
20.
Proc Natl Acad Sci U S A ; 121(7): e2312775121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324570

RESUMO

Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble into T = 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled to kBT precision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distinct hierarchical assembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures.


Assuntos
Capsídeo , Ciência dos Materiais , Capsídeo/metabolismo , Proteínas do Capsídeo/química , DNA/química , Cinética , Termodinâmica , Montagem de Vírus , Ciência dos Materiais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...